Atomic-scale control of emergent phases at complex oxide interfaces

Divine Kumah (NC State University)
Thursday, 11 February 2021 - 11:30am
Zoom ID: 945 0845 3259 Password: cmseminar

Complex oxides exhibit a wide range of exciting physical properties including high temperature superconductivity, metal-insulating transitions, and tunable magnetic and electronic phases. The ability to reduce the dimension of these systems in thin films allows for the stabilization of novel electronic and magnetic ground states. The manipulation of these emergent properties is ofgreat interest due to potential applications ranging from spintronics andorbitronics to photonics. We demonstrate the engineering of orbital and spin degrees of freedom at the interfaces between atomically thin layers of rare-earth manganite and chromate films synthesized by molecular beam epitaxy and report dynamic tuning of magnetism in multiferroic PbZrTiO3/LaSrCrO3/LaSrMnO3 heterostructures via external electric fields. Additionally, we report the gate and temperature modulation of a high spin-to-charge conversion efficiency in the high mobility two-dimensional electron gas formed at the interface between the polar antiferromagnetic LaCrO3 and insulating SrTiO3. These resultsdemonstrate the control of interactions at interfaces in quantum oxideheterostructures and illustrate pathways for harnessing their uniquefunctional properties in next-generation devices for energy, computing andinformation technologies.

Host: Thomas Barthel, Gelb Finkelstein